22 research outputs found

    Relatively effortless listening promotes understanding and recall of medical instructions in older adults

    Get PDF
    Communication success under adverse conditions requires efficient and effective recruitment of both bottom-up (sensori-perceptual) and top-down (cognitive-linguistic) resources to decode the intended auditory-verbal message. Employing these limited capacity resources has been shown to vary across the lifespan, with evidence indicating that younger adults out-perform older adults for both comprehension and memory of the message. This study examined how sources of interference arising from the speaker (message spoken with conversational vs. clear speech technique), the listener (hearing-listening and cognitive-linguistic factors), and the environment (in competing speech babble noise vs. quiet) interact and influence learning and memory performance using more ecologically valid methods than has been done previously. The results suggest that when older adults listened to complex medical prescription instructions with “clear speech,” (presented at audible levels through insertion earphones) their learning efficiency, immediate, and delayed memory performance improved relative to their performance when they listened with a normal conversational speech rate (presented at audible levels in sound field). This better learning and memory performance for clear speech listening was maintained even in the presence of speech babble noise. The finding that there was the largest learning-practice effect on 2nd trial performance in the conversational speech when the clear speech listening condition was first is suggestive of greater experience-dependent perceptual learning or adaptation to the speaker's speech and voice pattern in clear speech. This suggests that experience-dependent perceptual learning plays a role in facilitating the language processing and comprehension of a message and subsequent memory encoding

    Positional uncertainty in the Brown-Peterson paradigm

    Get PDF
    Since McGeoch’s (1932) influential article, no accounts of long-term memory have invoked decay as a cause of forgetting. In contrast, multiple accounts of short-term memory (STM) invoke decay, with many appealing to results from the Brown-Peterson paradigm as offering support. Two experiments are reported that used a standard Brown-Peterson task but which scored the data in 2 ways. With traditional scoring (was the entire 3-letter consonant trigram recalled?) performance decreased with increasing delay. With immediate serial recall scoring (e.g., was the first letter recalled first, was the second letter recalled second?), standard position error gradients (Experiment 1), and protrusion gradients (Experiment 2) were observed. That is, when the first letter of the consonant trigram was not recalled first, it was more likely to be recalled second than last. In addition, if a letter from a previous list was mistakenly recalled in a later list, it most likely retained its original position. The presence of such gradients is inconsistent with claims of decay but is predicted by SIMPLE, a local distinctiveness model of memory. Moreover, the presence of such gradients is consistent with the claim that forgetting in the Brown-Peterson paradigm follows the same principles observed in other memory tasks

    Modeling age-related differences in immediate memory using SIMPLE

    Get PDF
    In the SIMPLE model (Scale Invariant Memory and Perceptual Learning), performance on memory tasks is determined by the locations of items in multidimensional space, and better performance is associated with having fewer close neighbors. Unlike most previous simulations with SIMPLE, the ones reported here used measured, rather than assumed, dimensional values. The data to be modeled come from an experiment in which younger and older adults recalled lists of acoustically confusable and nonconfusable items. A multidimensional scaling solution based on the memory confusions was obtained. SIMPLE accounted for the overall difference in performance both between the two age groups and, within each age group, the overall difference between acoustically confusable and nonconfusable items in terms of the MDS coordinates. Moreover, the model accounted for the serial position functions and error gradients. Finally, the generality of the model’s account was examined by fitting data from an already published study. The data and the modeling support the hypothesis that older adults’ memory may be worse, in part, because of altered representations due to age-related auditory perceptual deficits

    Serial position functions in general knowledge

    Get PDF
    Serial position functions with marked primacy and recency effects are ubiquitous in episodic memory tasks. The demonstrations reported here explored whether bow-shaped serial position functions would be observed when people ordered exemplars from various categories along a specified dimension. The categories and dimensions were: actors and age; animals and weight; basketball players and height; countries and area; and planets and diameter. In all cases, a serial position function was observed: People were more accurate to order the youngest and oldest actors, the lightest and heaviest animals, the shortest and tallest basketball players, the smallest and largest countries, and the smallest and largest planets, relative to intermediate items. The results support an explanation of serial position functions based on relative distinctiveness, which predicts that serial position functions will be observed whenever a set of items can be sensibly ordered along a particular dimension. The serial position function arises because the first and last items enjoy a benefit of having no competitors on 1 side and therefore have enhanced distinctiveness relative to mid-dimension items, which suffer by having many competitors on both sides

    From Brown-Peterson to continual distractor via operation span: A SIMPLE account of complex span

    Get PDF
    Three memory tasks—Brown-Peterson, complex span, and continual distractor—all alternate presentation of a to-be-remembered item and a distractor activity, but each task is associated with a different memory system, short-term memory, working memory, and long-term memory, respectively. SIMPLE, a relative local distinctiveness model, has previously been fit to data from both the Brown-Peterson and continual distractor tasks; here we use the same version of the model to fit data from a complex span task. Despite the many differences between the tasks, including unpredictable list length, SIMPLE fit the data well. Because SIMPLE posits a single memory system, these results constitute yet another demonstration that performance on tasks originally thought to tap different memory systems can be explained without invoking multiple memory systems

    The focus of attention is similar to other memory systems rather than uniquely different

    Get PDF
    According to some current theories, the focus of attention (FOA), part of working memory, represents items in a privileged state that is more accessible than items stored in other memory systems. One line of evidence supporting the distinction between the FOA and other memory systems is the finding that items in the FOA are immune to proactive interference (when something learned earlier impairs the ability to remember something learned more recently). The FOA, then, is held to be unique: it is the only memory system that is not susceptible to proactive interference. We review the literature used to support this claim, and although there are many studies in which proactive interference was not observed, we found more studies in which it was observed. We conclude that the FOA is not immune to proactive interference: items in the FOA are susceptible to proactive interference just like items in every other memory system. And, just as in all other memory systems, it is how the items are represented and processed that plays a critical role in determining whether proactive interference will be observed

    A comparison of immediate serial recall and immediate serial recognition.

    No full text

    Serial position functions in general knowledge.

    No full text
    corecore